ar X iv : m at h / 99 03 05 9 v 3 [ m at h . R T ] 5 M ay 1 99 9 PRINCIPAL NILPOTENT PAIRS IN A SEMISIMPLE LIE ALGEBRA

نویسنده

  • VICTOR GINZBURG
چکیده

This is the first of a series of papers devoted to certain pairs of commuting nilpotent elements in a semisimple Lie algebra that enjoy quite remarkable properties and which are expected to play a major role in Representation theory. The properties of these pairs and their role is similar to those of the principal nilpotents. To any principal nilpotent pair we associate a two-parameter analogue of the Kostant partition function, and propose the corresponding two-parameter analogue of the weight multiplicity formula. In a different direction, each principal nilpotent pair gives rise to a harmonic polynomial on the Cartesian square of the Cartan subalgebra, that transforms under an irreducible representation of the Weyl group. In the special case of sln , the conjugacy classes of principal nilpotent pairs and the irreducible representations of the Symmetric group, Sn , are both parametrised (in a compatible way) by Young diagrams. In general, our theory provides a natural generalization to arbitrary Weyl groups of the classical construction of simple Sn -modules in terms of Young’s symmetrisers. First results towards a complete classification of all principal nilpotent pairs in a simple Lie algebra are presented at the end of this paper in an Appendix, written by A. Elashvili and D. Panyushev.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008